Local Mesh Refinement Using Rectangular Blended Finite Elements

James C. Cavendish
Mathematics Department, Research Laboratories, General Motors Corporation, Warren, Michigan 48090

Received March 10, 1975

Abstract

In a recent note [1], Birkhoff, Cavendish, and Gordon proposed a new and quite general class of piecewise polynomial rectangular finite elements which are easily constructed by local linear blending of simple univariate functions. Local mesh refinement is made easy for these new blended finite elements by removal of the usual requirement of vertex to vertex connection between adjacent elements so that two or more smaller elements can abut against the edge of a larger element. In addition, these elements can be modified to provide finite element approximations which exactly satisfy prescribed Dirichlet boundary conditions on the boundary of any bounded, (possibly) multiply connected rectangular polygon. The present paper explores these new techniques in detail and provides numerical examples which illustrate that high accuracy can be obtained and efficiency improved by using such locally refined, rectangular blended elements in finite element calculations.

1. Introduction

Nonsmooth elliptic boundary value problems occur frequently in practical engineering applications. For example, the exact solution may involve singularities, as is almost automatically the case for domains with corners, in material interface problems, or in problems involving source/sink driving functions. It is generally agreed that standard triangular elements (enriched when appropriate with singular functions) are more adaptable than rectangular elements for the approximation of such problems with the finite element method. This preference often stems from the relative ease with which local mesh refinement can be effected by the use of triangular elements.

Recently, a technique based on linear blending function theory [2, 9] was proposed for the derivation of new, rectangular, piecewise polynomial finite element types [1] and for which local mesh refinement is easily effected. ${ }^{1}$ These new elements

[^0]differ from standard piecewise polynomial finite elements in that vertex to vertex connection for adjacent elements is not required during element assembly, and thus two or more smaller elements are allowed to abut against the edge of a larger element.
Let Ω be any bounded rectangular polygon and let π be a decomposition of Ω into an arbitrary disjoint union of rectangles. In Figs. 1-4 we give examples which illustrate the kinds of locally refined arrays of rectangular elements which we have in mind. Note that some of the mesh lines of π terminate in the interior of Ω.

Fig. 1. Local mesh refinement about eight points.

Fig. 2. A second scheme for local mesh refinement about a point.

Fig. 3. Local mesh refinement at reentrant corner of L-shaped region.

Fig. 4. Local mesh refinement for a doubly connected rectangular polygon.

In Section 2, we show how these new piecewise polynomial blended elements are constructed. In addition, we indicate how these elements can be modified near the boundary of Ω to provide finite element approximations which exactly satisfy prescribed Dirichlet boundary conditions.

The results of numerical calculations are presented in Section 3 for three model problems: (1) the determination of displacement near the point of application of a point loaded membrane, (2) the determination of deformation of a cracked beam under torsion, and (3) a point source problem with nonhomogeneous Dirichlet boundary conditions. The main conclusion reached from these calculations is that the use of locally refined, linearly blended finite elements is an efficient technique for the approximation of nonsmooth boundary value problems.

2. The Linearly Blended Finite Element Subspace, $\boldsymbol{S}^{h}(\pi)$

Let Ω be a bounded, possibly multiply connected rectangular polygon which has been decomposed arbitrarily into a disjoint union π of rectangular cells, $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{N}$ by mesh lines drawn parallel to the x and y coordinate axes; and such that a total of M mesh nodes (vertices) $P_{1}, P_{2}, \ldots, P_{M}$ results. In Fig. 3, for example, $N=30$ and $M=47$. Let $\partial \Omega_{1}, \partial \Omega_{2}, \ldots, \partial \Omega_{N}$ represent the boundaries of the cells, and let h denote the maximum length of all cell sides.

The approximation scheme to be considered assigns to each set of nodal values $v_{j} \equiv v\left(P_{j}\right)$ a continuous, piecewise bilinear interpolant v^{h} defined on Ω as follows.
(i) Construct continuous, univariate, piecewise linear interpolants to the nodal values v_{j} along each vertical and horizontal mesh line using as joints the adjacent mesh nodes in π.
(ii) Within each mesh cell Ω_{D}, define v^{h} to be the linearly blended interpolant

Fig. 5. The element Ω_{p}.
[2,9] to the resulting piecewise linear boundary functions defined on the four edges of Ω_{p} by (i).

Let us be more specific. If Ω_{p} is an arbitrary cell in π, then the mesh nodes P_{i} associated with Ω_{p} are those nodes which lie on $\partial \Omega_{v}$ (see Fig. 5).

Now let $e_{1}(x), e_{2}(y), e_{3}(x)$, and $e_{4}(y)$ be univariate functions defined on the respective edges $\overline{P_{i} P_{j}}, \overline{P_{j} P_{k}}, \overline{P_{k} \overline{P_{l}}}$, and $\overline{P_{l} P_{i}}$ of Ω_{p} (cf. Fig. 5). The e functions (called edge functions in the sequel) are assumed only to be compatible (i.e., $e_{1}\left(x_{i}\right)=e_{4}\left(y_{i}\right)$, etc.). Linear blending [2,9] of these edge functions defines the interpolant

$$
\begin{align*}
v(x, y) \equiv & e_{4}(y)\left[\frac{x_{k}-x}{x_{k}-x_{i}}\right]+e_{2}(y)\left[\frac{x-x_{i}}{x_{k}-x_{i}}\right]+e_{1}(x)\left[\frac{y_{k}-y}{y_{k}-y_{i}}\right] \\
& +e_{3}(x)\left[\frac{y-y_{i}}{y_{k}-y_{i}}\right]-e_{1}\left(x_{i}\right)\left[\frac{x_{k}-x}{x_{k}-x_{i}}\right]\left[\frac{y_{k}-y}{y_{k}-y_{i}}\right] \\
& -e_{1}\left(x_{k}\right)\left[\frac{x-x_{i}}{x_{k}-x_{i}}\right]\left[\frac{y_{k}-y}{y_{k}-y_{i}}\right]-e_{3}\left(x_{k}\right)\left[\frac{x-x_{i}}{x_{k}-x_{i}}\right]\left[\frac{y-y_{i}}{y_{k}-y_{i}}\right] \\
& -e_{3}\left(x_{i}\right)\left[\frac{x_{k}-x}{x_{k}-x_{i}}\right]\left[\frac{y-y_{i}}{y_{k}-y_{i}}\right] . \tag{1}
\end{align*}
$$

Note that $v(x, y)$ interpolates exactly the edge functions on $\partial \Omega_{p}$.
If the edge functions in (1) are all defined to be compatible piecewise linear functions with joints located at the mesh nodes associated with Ω_{p}, then it follows from (1) that the resulting function v^{h} is continuous, piecewise bilinear on Ω_{p} with respect to the tensor product partition shown in Fig. 6.

Fig. 6. v^{h} defined on Ω_{p}.

A cell is called simple if the only nodes associated with it are its four corner nodes. It follows from (1) that v^{h} is bilinear on a simple cell Ω_{p} (i.e., $v^{h}=a_{0}+a_{1} x+$ $a_{2} y+a_{3} x y$), hence (Ω_{p}, v^{n}) is the familiar bilinear finite element with four degrees of freedom. If Ω_{p} is a nonsimple cell, then v^{h} is piecewise bilinear on Ω_{p} (cf. Fig. 6) and $\left(\Omega_{p}, v^{h}\right)$ is in fact a macroelement [12, p. 84] with interior nodal values constrained a priori by construction.

If v^{h} is defined on Ω via its local definition on each Ω_{p}, then v^{h} is uniquely determined by its nodal values $v^{h}\left(P_{j}\right), j=1,2, \ldots, M$. Note also that v^{h} is continuous on all of Ω and hence has finite strain energy (i.e., the Dirichlet integral $\iint_{\Omega}\left(\nabla v^{h} \cdot \nabla v^{h}\right) d x d y$ is bounded). Therefore, if $S^{h}(\pi)$ is defined to be the collection of all v^{h} as $\left(v^{h}\left(P_{1}\right), v^{h}\left(P_{2}\right), \ldots, v^{h}\left(P_{M}\right)\right.$) ranges over R^{M}, then $S^{h}(\pi)$ is an M-dimensional admissible trial solution space for finite element approximations to second-order elliptic boundary value problems. A slight modification of the convergence proof in [1] shows that if $u(x, y)$ is a sufficiently smooth function defined on Ω, then

$$
\left\|u-\tilde{u}^{h}\right\|=O(h),
$$

where $\|\cdot\|$ is the norm $\|v\|^{2} \equiv \iint_{\Omega}\left\{v^{2}+v_{x}{ }^{2}+v_{y}{ }^{2}\right\} d x d y$ and $\tilde{u}^{h} \in S^{h}(\pi)$ is characterized by $\tilde{u}^{h}\left(P_{i}\right)=u\left(P_{i}\right), i=1,2, \ldots, M$.

If we define $S_{0}{ }^{h}(\pi)$ to be the subspace of functions in $S^{h}(\pi)$ which vanish on $\partial \Omega$, then it follows that $v^{h} \in S_{0}{ }^{h}(\pi)$ if and only if $v^{h}\left(P_{i}\right)=0$ for all $P_{i} \in \partial \Omega$.

Finally, let $g(x, y)$ be a given function defined on $\partial \Omega$ (a Dirichlet boundary condition, for example) and let Ω_{p} be any cell in π. For those edges of Ω_{p} which lie in $\partial \Omega$, let the corresponding e functions in (1) be given by the appropriate values of $g(x, y)$, while for edges of $\partial \Omega$ which do not lie in $\partial \Omega$, let the corresponding compatible e functions be piecewise linears defined by the interpolation conditions

$$
\begin{array}{lll}
e\left(P_{i}\right)=g\left(P_{i}\right) & \text { if } & P_{i} \in \partial \Omega, \\
e\left(P_{i}\right)=0 & \text { if } & P_{i} \notin \partial \Omega .
\end{array}
$$

Let the resulting linear blended interpolant in (1) be denoted $G^{n}(x, y)$. Note that if G^{h} is extended to all of Ω by its local definition on Ω_{p}, then $G^{h} \equiv g$ on $\partial \Omega$ and $G^{h} \equiv 0$ on all $\Omega_{\mathfrak{p}}$ such that $\Omega_{p} \cap \partial \Omega$ is empty. The locally refined trial solution space defined by $G^{h}+S_{0}{ }^{h}(\pi)$ can now be used to provide finite element approximations $u^{h} \equiv G^{h}+v^{h}$ which exactly satisfy the boundary condition $u=g$ on $\partial \Omega .{ }^{2}$

Before considering numerical results, we describe a computationally convenient basis for the space $S^{n}(\pi)$. Let $\phi_{j}(x, y)$ be the trial function in $S^{h}(\pi)$ which equals 1 at the j th node and zero at all other nodes in π. Then these linearly blended

[^1]functions ϕ_{j} form a patch basis for the trial space $S^{h}(\pi)$; that is, ϕ_{j} vanishes on all elements not containing the j th node. Using this basis for numerical calculations, we focus now on the implementation of locally refined, linearly blended elements for the finite element approximation of three boundary value problems.

3. Numerical Results

For our first problem we consider the determination of displacement near the point of application of a point loaded rectangular membrane.

The Point Loaded Membrane

Consider the simple displacement problem for a clamped square membrane subject to a point load applied at its center. The displacement u is characterized by the boundary value problem

$$
\begin{gather*}
-\nabla^{2} u=f(x, y)=\delta\left(x-\frac{1}{2}, y-\frac{1}{2}\right) \quad \text { for } \quad(x, y) \in \Omega=(0,1) \times(0,1), \tag{2}\\
u=0 \quad \text { for } \quad(x, y) \in \partial \Omega, \tag{3}
\end{gather*}
$$

and u behaves radially at $\left(\frac{1}{2}, \frac{1}{2}\right)$ like $\ln r$. Let $S_{0}{ }^{h}(\pi)$ be the space of linearly blended trial functions which vanish on $\partial \Omega$. The finite element approximation $u^{h} \in S_{0}{ }^{h}(\pi)$ is defined to be that function in $S_{0}{ }^{h}(\pi)$ that satisfies

$$
\iint_{\Omega}\left\{u_{x}{ }^{h} v_{x}+u_{y}{ }^{h} v_{y}\right\}=\iint_{\Omega}\{f v\} \equiv v\left(\frac{1}{2}, \frac{1}{2}\right) \quad \text { for all } \quad v \in S_{0}{ }^{h}(\pi)
$$

We begin by defining a sequence of locally refined rectangular partitions π_{n}, $n=1,2, \ldots$ of Ω. In Figs. $7-9$ we show π_{1}, π_{2}, and π_{3}, and from these constructions it should be clear how π_{n} is derived as a local refinement of π_{n-1}. Note that each π_{n} is a nested union of square elements with the maximum side length of any element being $\bar{\pi}_{n}=\frac{1}{4}\left(\frac{1}{2}\right)^{n-1}$. Also, $\operatorname{dim} S_{0}{ }^{h}\left(\pi_{n}\right)=16 n-7$.

In Fig. 10 we plot the plane sectional values of displacement u and approximate

Fig. 7. Partition π_{1} for membrane problem.

Fig. 8. Partition π_{2} for membrane problem.

Fig. 9. Partition π_{3} for membrane problem.
displacement u^{h} determined along the 45° line $y=x$ for the partitions π_{1}, π_{3}, and π_{5}. The values of the exact solution $u(x, y)$ were calculated from the representation given in [5, p. 386]. As anticipated, local mesh refinement results in improved accuracy without the expense of a large increase in the number of unknowns in the finite element problem.

Torsion Problem

For our second problem (Fix, Gulati, and Wakoff [7]) we consider the boundary value problem

$$
\begin{align*}
-\nabla^{2} u & =1 & & \text { on } \Omega, \tag{4}\\
u & =0 & & \text { on } P P_{1}, P_{2} P_{3}, \tag{5}\\
\partial u / \partial \eta & =0 & & \text { on } P_{1} P_{2}, Q_{2} P_{3}, P Q_{2},
\end{align*}
$$

where Ω is the rectangle $[0,1] \times\left[0, \frac{1}{2}\right]$ (see Fig. 11). This boundary value problem arises in the study of the rigidity and deformation of a cracked square elastic beam under torsion (see [7] for details).

The solution u to (4) and (5) has a singularity only at the point $P=\left(\frac{1}{2}, \frac{1}{2}\right)$, which behaves radially at P like $r^{1 / 2} \sin \theta / 2$. The so-called stress intensity factor, σ_{0}, associated with (4) and (5) is defined by

$$
\begin{equation*}
\sigma_{0}=\lim _{r \rightarrow 0} r^{-1 / 2}[u(r, \pi)] . \tag{6}
\end{equation*}
$$

Fig. 10. Plots of exact solution u to source problem (2), (3), and finite element approximations u^{h} in $S_{0}{ }^{h}\left(\pi_{n}\right)$ for $n=1,3$, and 5 .

Fig. 11. The domain Ω.

Our aim is to provide accurate approximations to σ_{0} using finite element approximations u^{h} generated in the linearly blended finite element space $S_{0}{ }^{h}(\pi)$ (in this case the members of $S_{0}{ }^{n}(\pi)$ need only be forced to satisfy the essential Dirichlet boundary conditions given in (5)). To this end we define a sequence $\left\{\pi_{n}\right\}$ of locally refined rectangular decompositions of Ω. In Figs. 12-14 we show

Fig. 12. The partition π_{1} for the crack problem.

Fig. 13. The partition π_{2} for the crack problem.

Fig. 14. The partition π_{3} for the crack problem.
π_{1}, π_{2}, and π_{3} from these figures it should be clear how π_{n} is constructed as a local refinement of π_{n-1}. Note again that for any n, π_{n} is composed solely of square elements with maximum side length $\bar{\pi}_{n}=\frac{1}{4}$ and minimum side length $\underline{\pi}_{n}=\frac{1}{4}\left(\frac{1}{2}\right)^{n-1}=\left(\frac{1}{2}\right)^{n+1}, n=1,2, \ldots$. By counting the number of unconstrained node points in π_{n}, it is easy to verify that

$$
\begin{align*}
\operatorname{dim}\left(S_{0}{ }^{h}\left(\pi_{n}\right)\right) & =\operatorname{dim}\left(S_{0}{ }^{h}\left(\pi_{n-1}\right)\right)+8 \\
& =8 n-1 \quad \text { for } \quad n=1,2, \ldots . \tag{7}
\end{align*}
$$

By virtue of (7), the symmetric, banded finite element stiffness matrix $K_{L B}\left(\pi_{n}\right)$, which arises from calculations in $S_{0}{ }^{h}\left(\pi_{n}\right)$, is an $(8 n-1) \times(8 n-1)$ matrix for $n=1,2, \ldots$ Let $M_{L B}\left(\pi_{n}\right)$ represent the bandwidth of $K_{L B}\left(\pi_{n}\right)$. That is to say, $M_{L B}\left(\pi_{n}\right)$ is the number of strictly upper diagonals in $K_{L B}\left(\pi_{n}\right)$. Now suppose that the unknowns in $S_{0}{ }^{h}\left(\pi_{n}\right)$ are ordered according to the nested scheme shown for π_{3} in Fig. 15. From Fig. 15 it should be clear how this nested ordering would be defined for $\pi_{n}, n=1,2, \ldots$. From Fig. 15 it can be easily verified that

$$
\begin{equation*}
M_{L B}\left(\pi_{n}\right)=10 \quad \text { for all } n=1,2, \ldots \tag{8}
\end{equation*}
$$

Fig. 15. A nested ordering of unknowns in π_{3}.
Finally, if u^{h} is the linearly blended finite element approximation to u in $S_{0}{ }^{h}\left(\pi_{n}\right)$, then we define $\sigma_{n}\left(r^{*}\right) \cong \sigma_{0}$ by (cf. (7))

$$
\begin{equation*}
\sigma_{n}\left(r^{*}\right) \equiv u^{h}\left(r^{*}, \pi\right) /\left(r^{*}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

where r^{*} is a small positive number. The exact value of σ_{0} determined in [7] is given by $\sigma_{0}=0.1917$. In Table I we show the results of determining $\sigma_{n}\left(r^{*}\right)$ in (9) using $u^{h} \in S_{0}^{h}\left(\pi_{n}\right)$ for $n=12,15,18$, and 21. For this table the values $r^{*}=\left(\frac{1}{2}\right)^{10},\left(\frac{1}{2}\right)^{11},\left(\frac{1}{2}\right)^{12}$ and $\left(\frac{1}{2}\right)^{13}$ were used.

Table II gives the values for the approximate stress function u^{h} at the points with coordinates $R_{1}=(12 / 24,11 / 24), R_{2}=(1 / 24,1 / 4)$ and $R_{3}=(23 / 24,1 / 4)$ for

TABLE I
An Approximation to Stress Intensity Factor σ_{0} for Crack Problem Using Linearly Blended Finite Elements in $S_{0}{ }^{h}\left(\pi_{n}\right)$ to Calculate $\sigma_{n}\left(\sigma_{0}=0.1917\right)$

TABLE II

Linearly Blended Finite Element Approximations in the Space $S_{0}{ }^{h}\left(\pi_{n}\right)$ to the Stress Function Calculated at the Points R_{1}, R_{2}, and R_{3}

n	Dimension of $S_{0}{ }^{h}\left(\pi_{n}\right)$	$u^{h}\left(R_{1}\right)^{a}$	$u^{h}\left(R_{2}\right)^{b}$	$u^{h}\left(R_{3}\right)^{c}$
1	7	0.007423	0.03189	0.06685
3	23	0.02070	0.03375	0.07032
6	47	0.02650	0.03387	0.07105
12	95	0.02694	0.03388	0.07105

```
\({ }^{a} R_{1}=(12 / 24,11 / 24), u\left(R_{1}\right)=0.027425\).
\({ }^{c} R_{2}=(1 / 24,1 / 4), u\left(R_{2}\right)=0.032877\).
\({ }^{c} R_{3}=(23 / 24,1 / 4), u\left(R_{3}\right)=0.070844\).
```

the partitions $\pi_{1}, \pi_{3}, \pi_{6}$, and π_{12}. The exact values of u at R_{1}, R_{2}, and R_{3} were determined in [7] to be, respectively, $0.027425,0.032877$, and 0.070844 .

In order to provide comparison of locally refined, linearly blended finite elements with the technique of adjoining appropriate singular basis functions to standard piecewise polynomial finite element spaces, we consider the results presented in [7] for approximating (4) and (5). In [7] a uniform product partition of subsquares with side length h is first used to decompose the region Ω in Fig. 11. Next, piecewise polynomial, finite element spaces associated with the product partition of Ω are defined as follows.
(i) $S_{h}{ }^{L}$ denotes the space of continuous bilinear polynomials $a+b x+$ $c y+d x y$ in each subsquare of Ω.
(ii) $S_{h}{ }^{H}$ denotes the space of C^{1} functions which are bicubic Hermite polynomials in each subsquare of Ω.
(iii) $S_{h}^{S L}$ is the space of piecewise bicubic polynomials of class C^{2} everywhere except across the line $P Q$ in Fig. 11 where they are only continuous.

To the spaces $S_{h}{ }^{L}, S_{h}{ }^{H}$, and $S_{h}^{S L}$ are added singular functions (see [7, pp. 211-216] for details). Four singular basis functions are added to $S_{h}{ }^{I I}$ and $S_{h}^{S L}$, while two singular basis functions are added to $S_{h}{ }^{L}$. Finally, the spaces enriched with singular functions are denoted by $S S_{h}^{L}, S S_{h}^{H}$, and $S S_{h}^{S L}$.

In Table I' we reproduce the results given in [7] for the approximate stress intensity factor $\sigma_{0}{ }^{h}$ defined using finite element approximations in $S S_{h}{ }^{L}, S S_{h}{ }^{H}$, and $S S_{h}^{S L}$. Table II' gives the values of the finite element approximations in $S S_{h}^{L}$, $S S_{h}{ }^{H}$, and $S S_{h}^{S L}$ at the points R_{1}, R_{2}, R_{3} defined in Table II.

TABLE I'

Approximate Stress Intensity Factor $\sigma_{0}{ }^{h}$ Using Singular Finite Element Approximations

Space	Dimension (h)	$\sigma_{0}{ }^{h}$ (0.1917)
$S S_{h}^{S L}$	$40(1 / 6)$	0.1925
	$59(1 / 8)$	0.1920
	$109(1 / 12)$	0.1918
	$36(1 / 4)$	0.1902
		$132(1 / 8)$
0.1915		
	$204(1 / 10)$	0.1916
	$33(1 / 8)$	0.1830
	$129(1 / 16)$	0.1867
	$201(1 / 20)$	0.1877

TABLE II'
Singular Finite Element Approximation to the Solution of Eqs. (4) and (5)

Space	Dimension (h)	R_{1} 0.027425	R_{2} 0.032877	R_{3} 0.070844
	$40(1 / 6)$	0.027438	0.032887	0.070835
	$59(1 / 8)$	0.027429	0.032881	0.070847
	$109(1 / 12)$	0.027426	0.032877	0.070844
$S S_{h}{ }^{H}$	$36(1 / 4)$	0.027402	0.032859	0.070895
	$132(1 / 8)$	0.027423	0.032876	0.070848
	$204(1 / 10)$	0.027424	0.032877	0.070844
$S S_{h}{ }^{L}$	$33(1 / 8)$	0.026459	0.033025	0.070385
	$129(1 / 16)$	0.027153	0.032917	0.070721
	$201(1 / 30)$	0.027289	0.032903	0.070780

Comparison of Table I with Table I' and Table II with Table II' shows that finite element calculations using locally refined, linearly blended finite elements compare favorably (if system dimensionality is the basis for comparison) with like calculations performed in the piecewise polynomial spaces which have been augmented by singular functions. We remark that convergence is numerically demonstrated
in Table II' as $h \rightarrow 0$ for finite element approximations in $S S_{h}{ }^{L}, S S_{h}{ }^{H}$, and $S S_{h}^{S L}$. That numerical convergence is not demonstrated in Table II for approximations in $S_{0}{ }^{h}\left(\pi_{n}\right)$ is attributable to the fact that an increase in n in Table II implies a local refinement of $\pi_{n}\left(h=\bar{\pi}=\frac{1}{4}\right.$ remains constant for all $\left.n\right)$ about the point P in Fig. 11, while a decrease in h in Table II' implies a global refinement in the product partition of the entire region Ω. Convergence in $S_{0}{ }^{h}\left(\pi_{n}\right)$ is, of course, achieved as $h \rightarrow 0$.

Let Π_{n} be the decomposition of Ω into rectangles defined by extending to $\partial \Omega$ all those mesh lines in π_{n} which have terminal points interior to $\Omega . \Pi_{n}$ is said to be a semilocal product mesh refinement of Ω. Since all cells in Π_{n} are simple cells, the space $S_{0}{ }^{n}\left(\Pi_{n}\right)$ of linearly blended finite elements defined in Section 2 is, in fact, the familiar tensor product space of rectangular bilinear finite elements associated with Π_{n} with four degrees of freedom per element. If the nodal unknowns in $S_{0}{ }^{h}\left(\Pi_{n}\right)$ are ordered from left to right, a line at a time as usual, then it is easily verified that

$$
\begin{align*}
\operatorname{dim} S_{0}{ }^{n}\left(\Pi_{n}\right) & =2 n^{2}+4 n+1, \tag{10}\\
M_{L B}\left(\Pi_{n}\right) & =2(n+2), \tag{11}
\end{align*}
$$

where $M_{L B}\left(\Pi_{n}\right)$ is the bandwidth of the stiffness matrix defined by finite element approximations to (4) and (5) in $S_{0}{ }^{h}\left(\Pi_{n}\right)$.
In Table III we give the numerical results of approximating the stress intensity factor σ_{0} by $\sigma_{n}\left(r^{*}\right)$ in (9) using u^{h} in $S_{0}{ }^{h}\left(\Pi_{n}\right)$ for $n=12,15$, and 18 . The conclusions to be drawn from a comparison of Tables I and III are obvious: Accurate approximations to σ_{0} using finite element approximations in the locally refined space

TABLE III

> Approximation to Stress Intensity Factor σ_{0} for Crack Problem Using Bilinear Tensor Product Finite Elements in $S_{0}{ }^{n}\left(\Pi_{n}\right)$ to Calculate $\sigma_{n}\left(\sigma_{0}=0.1917\right)$

n	$\begin{gathered} \operatorname{Dim}_{S_{0} n}\left(I_{n}\right) \\ =2 n^{2}+4 n+1 \end{gathered}$	$\begin{gathered} M_{L B}\left(\Pi_{n}\right) \\ =2 n+4 \end{gathered}$	$\sigma_{n}\left(r^{*}\right)^{a}$	$\sigma_{n}\left(r^{*}\right)^{\text {b }}$	$\sigma_{n}\left(r^{*}\right)^{\text {c }}$	$\sigma_{n}\left(r^{*}\right)^{d}$
12	337	28	0.1898	0.1878	0.1834	0.1788
15	511	34	0.1916	0.1915	0.1910	0.1898
18	721	40	0.1917	0.1917	0.1917	0.1917

$$
\begin{aligned}
& a r^{*}=\left(\frac{1}{2}\right)^{10} . \\
& { }^{\mathbf{b}} r^{*}=\left(\frac{1}{2}\right)^{11} . \\
& { }^{1} r^{*}=\left(\frac{1}{1}\right)^{12} . \\
& { }^{a} r^{*}=\left(\frac{1}{2}\right)^{13} .
\end{aligned}
$$

$S_{0}{ }^{h}\left(\pi_{n}\right)$ can be obtained with far fewer unknowns than similar approximations in the semilocally refined bilinear space $S_{0}{ }^{h}\left(\Pi_{n}\right)$.

A Source Problem: Exact Representation of Boundary Conditions

Our final example (Marshall and Mitchell [11]) involves nonhomogeneous Dirichlet boundary conditions, $u=g$ on $\partial \Omega$, and is included to illustrate the results of performing finite element calculations in the space $G^{h}+S_{0}{ }^{h}(\pi)$, where G^{h} is the linearly blended interpolant of g defined in Section 2 such that $G^{h} \equiv g$ on $\partial \Omega$.

For $\epsilon>0$, consider the problem

$$
\begin{equation*}
\nabla^{2} u=0 \quad \text { on } \quad \Omega=(0,1) \times(0,1) \tag{12}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
u=g \equiv \ln r \quad \text { on } \quad \partial \Omega, \tag{13}
\end{equation*}
$$

where $r^{2} \equiv(x+\epsilon)^{2}+(y+\epsilon)^{2}$. The exact solution u to this problem is given by

$$
u=\ln r \quad \text { for } \quad(x, y) \text { in } \bar{\Omega} .
$$

Note that u possesses high local gradient near the origin with $\|\nabla u\|=1 / r$ in Ω and $\|\nabla u\| \doteq 0.707 / \epsilon$ for $(x, y)=(0,0)$.

Let $\left\{\pi_{n}\right\}$ be the sequence of locally refinement rectangular partitions of Ω defined in Figs. 16-18 for $n=1,2$, and 3.

Fig. 16. The partition π_{1}.

Fig. 17. The partition π_{2}.

Fig. 18. The partition π_{3}.

Let $\left\{\Pi_{n}\right\}$ be the sequence of tensor product, semilocally refined partitions of Ω, where π_{n} is defined by extending the mesh lines of π_{n} through to $\partial \Omega$. As before, $S_{0}{ }^{h}\left(\pi_{n}\right)$ is the locally refined space of linearly blended elements, and $S_{0}{ }^{h}\left(\Pi_{n}\right)$ is the standard semilocally refined tensor product space of bilinear elements.

Next, let $\tilde{g}\left(\pi_{n}\right)$ and $\tilde{g}\left(\Pi_{n}\right)$ represent discrete piecewise linear interpolants to the boundary function g in (13) defined with respect to the boundary mesh nodes in π_{n} and Π_{n}, respectively, and let $G^{n}\left(\pi_{n}\right), \tilde{G}^{n}\left(\pi_{n}\right)$ and $\sigma^{\tilde{n}}\left(\Pi_{n}\right)$ be, respectively, the linearly blended interpolants of $g, \tilde{g}\left(\pi_{n}\right)$, and $\tilde{g}\left(\Pi_{n}\right)$ as defined in Section 2. We now consider finite element approximations to (12) and (13) generated in the three functions spaces $G^{h}\left(\pi_{n}\right)+S_{0}{ }^{h}\left(\pi_{n}\right), \quad G^{h}\left(\pi_{n}\right)+S_{0}{ }^{h}\left(\pi_{n}\right)$, and $G^{h}\left(\Pi_{n}\right)+S_{0}{ }^{h}\left(\Pi_{n}\right)$. Table IV we list the characteristics of each of the approximation spaces.

TABLE IV
Characteristics of Approximation Spaces

Space	Dim $S_{0}{ }^{n}(\cdot)$	Bandwidth of stiffness matrix	Value on $\partial \Omega$	Type of refinement
$G^{n}\left(\pi_{n}\right)+S_{0}{ }^{h}\left(\pi_{n}\right)$	$3 n-2$	3^{a}	g	Local
$\tilde{\tilde{G}^{n}\left(\pi_{n}\right)+S_{0}{ }^{n}\left(\pi_{n}\right)}$	$2 n-2$	3^{a}	$\tilde{g}\left(\pi_{n}\right)$	Local
$\tilde{G}^{h}\left(I_{n}\right)+S_{0}{ }^{h}\left(\Pi_{n}\right)$	n^{2}	n^{b}	$\tilde{g}\left(\Pi_{n}\right)$	Semilocal

${ }^{\text {a }}$ Based on nested ordering of unknowns similar to Fig. 15.
${ }^{b}$ Based on usual ordering of tensor product unknowns.

The finite element approximation $u^{h} \equiv G^{h}\left(\pi_{n}\right)+v^{h}$ in $G^{h}\left(\pi_{n}\right)+S_{0}{ }^{h}\left(\pi_{n}\right)$ to u is characterized by

$$
\left(\nabla\left(G^{h}\left(\pi_{n}\right)+v^{h}\right), \nabla v\right)=0 \quad \text { for all } v \text { in } S_{0}^{h}\left(\pi_{n}\right),
$$

where (,) is the usual L_{2}-inner product on Ω. Similar characterizations hold for u^{h} in $\hat{G}^{n}\left(\pi_{n}\right)+S_{0}{ }^{n}\left(\pi_{n}\right)$ and $\widehat{G}^{n}\left(\Pi_{n}\right)+S_{0}^{n}\left(\Pi_{n}\right)$. We remark that $u_{n} \in \mathcal{G}^{n}\left(\Pi_{n}\right)+$
$S_{0}{ }^{h}\left(\Pi_{n}\right)$ is a standard tensor product finite element approximation to (12) and (13) in which the boundary condition has been approximated by piecewise linear interpolation.

Let $\epsilon=10^{-5}$ in (13) so that $\|u\| \doteq 10^{5}$ at $(0,0)$. In Tables V, VI, and VII we give the numerical results of approximating u by its finite element approximation

TABLE V
Finite Element Approximation to Eqs. (12) and (13) in $G^{h}\left(\pi_{n}\right)+S_{0}{ }^{h}\left(\pi_{n}\right)$

n	$\operatorname{Dim} S_{0}{ }^{h}\left(\pi_{n}\right)$	Bandwidth of stiffness matrix	$\left\\|u-u^{h}\right\\|_{\infty}$	(Relative error)
8	22	3	2.41	(34.0%)
10	28	3	1.44	(17.7%)
12	34	3	0.67	(7.3%)

Note. $u^{h} \in G^{h}\left(\pi_{n}\right)+S_{0}{ }^{h}\left(\pi_{n}\right)$.

TABLE VI
Finite Element Approximation to Eqs. (12) and (13) in $\tilde{G}^{n}\left(\pi_{n}\right)+S_{0}{ }^{h}\left(\pi_{n}\right)$

n	$\operatorname{Dim} S_{0}{ }^{n}\left(\pi_{n}\right)$	Bandwidth of stiffness matrix	$\left\\|u-u^{h}\right\\|_{\infty}$	(Relative error)
8	22	3	4.29	(67.1%)
12	34	3	1.92	(21.8%)
14	40	3	0.96	(9.92%)

Note. $u^{h} \in \widetilde{G}^{n}\left(\pi_{n}\right)+S_{0}^{h}\left(\pi_{n}\right)$.

TABLE VII

Finite Element Approximation to Eqs. (12) and (13) in $\tilde{G}^{n}\left(\Pi_{n}\right)+S_{0}^{n}\left(\Pi_{n}\right)$

n	$\operatorname{Dim} S_{0}{ }^{h}\left(\Pi_{n}\right)$	Bandwidth of stiffness matrix	$\left\\|u-u^{h}\right\\|_{\infty}$	(Relative error)
8	64	8	2.91	(40.1%)
10	100	10	1.83	(21.8%)
12	144	12	0.91	(9.73%)

Note. $u^{n} \in \tilde{G}^{A}\left(\Pi_{n}\right)+S_{0}^{n}\left(\Pi_{n}\right)$.
u^{h} in $G^{n}\left(\pi_{n}\right)+S_{0}{ }^{n}\left(\pi_{n}\right), \tilde{G}^{n}\left(\pi_{n}\right)+S_{0}{ }^{h}\left(\pi_{n}\right)$, and $\tilde{G}^{n}\left(\Pi_{n}\right)+S_{0}{ }^{n}\left(\Pi_{n}\right)$, respectively. In these tables $\|\cdot\|_{\infty}$ signifies the maximum norm. As expected, for a given dimensionality, approximations in $G^{h}\left(\pi_{n}\right)+S_{0}^{h}\left(\pi_{n}\right)$ are more accurate than similar approximations in $G^{h}\left(\pi_{n}\right)+S_{0}^{h}\left(\pi_{n}\right)$; and this improvement is most noticeable for coarse partitions. Comparing Tables V and VI with VII indicates, however, that local mesh refinement is the most important factor (as opposed to the exact representation of boundary conditions) in improving the efficiency of the finite element calculations.

4. Conclusions and Comments

We have described the construction and use of a finite dimensional, piecewise bilinear, space of linearly blended finite elements. When used as a trial solution space, this class of functions permits locally refined rectangular partitions of any bounded rectangular polygon Ω. Numerical calculations indicate that finite element approximations can be generated in these spaces which yield accurate approximations to boundary value problems possessing local regions of high gradients without the expense of an unreasonably large number of finite element nodal unknowns.

We wish to point out that although the region Ω has been assumed throughout to be a rectangular polygon, the linearly blended elements discussed in this paper can be abuted against any element that yields linear displacement along the adjoining adge (for example, linear triangles or curved isoparametric triangles with at least one linear side [16]). Such a merger would yield continuous approximations and would exploit the greater flexibility of triangular elements for approximating curved boundaries.

As pointed out in [1], higher order linearly blended elements can be constructed by considering higher order piecewise polynomial edge functions in (1) than the piecewise linears considered in Section 2 (for example, cubic spline or cubic Hermite polynomials). We presume that the conclusions we have reached in this paper would not be changed were such extensions to be implemented.

Acknowledgment

The author thanks Professor Garrett Birkhoff and Dr. William Gordon for their helpful discussions and for their careful reading of the manuscript.

References

1. G. Birkhoff, J. C. Cavendish, and W. J. Gordon, Proc. Nat. Acad. Sci. 9 (1974), 3423-3425.
2. G. Birkhoff and W. J. Gordon, J. Approximation Theory 1 (1968), 199-208.
3. J. C. Cavendish, W. J. Gordon, and C. A. Hall, Ritz-Galerkin Approximations in Blending Function Spaces, I. Approximation Theoretic Analysis, to appear in Numer. Math. (also available as General Motors Research Publication GMR-1572).
4. J. C. Cavendish, W. J. Gordon, and C. A. Hall, Ritz-Galerkin Approximations in Blending Function Spaces, II. Computational Aspects, submitted to Numer. Math. (also available as General Motors Research Publication GMR-1572 Part II).
5. R. Courant and D. Hilbert, "Methods of Mathematical Physics," Vol. I, Interscience, New York, 1953.
6. S. C. Eisenstat and M. H. Schultz, Computational Aspects of the Finite Element Method in "The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations," pp. 505-524, Academic Press, New York, 1972.
7. G. Fix, S. Gulati, and G. I. Wakoff, J. Computational Phys. 13 (1973), 209-228.
8. A. George, SIAM J. Numer. Anal. 10 (1973), 345-363.
9. W. J. Gordon, SIAM J. Numer. Anal. 8 (1971), 158-177.
10. W. J. Gordon and C. A. Hall, Numer. Math. 21 (1973), 109-129.
11. J. A. Marshall and A. R. Mitchell, J. Inst. Math. Appl. 12 (1973), 355-362.
12. G. Strang and G. Fix, "Analysis of the Finite Element Method," Prentice-Hall, Englewood Cliffs, N.J., 1973.
13. B. K. Swartz and R. S. Varga, J. Approximation Theory 6 (1972), 6-49.
14. R. Wait and A. R. Mitchell, J. Computational Phys. 8 (1971), 45-52.
15. D. Watkins, Ph.D. Thesis, University of Calgary, 1974.
16. O. C. Zienkiewicz, "The Finite Element Method in Engineering Science," McGraw-Hill, London, 1971.
17. M. Zlámal, SIAM J. Numer. Anal. 10 (1973), 229-240.

[^0]: ${ }^{1}$ For earlier treatments of blended elements see $[3,4,10,11,15]$.

[^1]: ${ }^{2}$ This exact boundary technique was first proposed for finite element analysis by Marshall and Mitchell [11] for bilinear tensor product elements.

