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In a recent note [1], Birlchoff, Cavendish, and Gordon proposed a new and quite 
general class of piecewise polynomial rectangular finite elements which are easily con- 
structed by local linear blending of simple univariate functions. Local mesh refinement 
is made easy for these new blended finite elements by removal of the usual requirement 
of vertex to vertex connection between adjacent elements so that two or more smaller 
elements can abut against the edge of a larger element. In addition, these elements can 
be modified to provide finite element approximations which exactly satisfy prescribed 
Dirichlet boundary conditions on the boundary of any bounded, (possibly) multiply 
connected rectangular polygon. The present paper explores these new techniques in detail 
and provides numerical examples which illustrate that high accuracy can be obtained and 
efficiency improved by using such locally refined, rectangular blended elements in 
finite element calculations. 

1. INTRODUCTION 

Nonsmooth elliptic boundary value problems occur frequently in practical 
engineering applications. For example, the exact solution may involve singularities, 
as is almost automatically the case for domains with corners, in material interface 
problems, or in problems involving source/sink driving functions. It is generally 
agreed that standard triangular elements (enriched when appropriate with singular 
functions) are more adaptable than rectangular elements for the approximation 
of such problems with the finite element method. This preference often stems from 
the relative ease with which local mesh rejinement can be effected by the use of 
triangular elements. 

Recently, a technique based on linear blending function theory [2, 91 was 
proposed for the derivation of new, rectangular, piecewise polynomial finite element 
types [l] and for which local mesh refinement is easily effected.l These new elements 

1 For earlier treatments of blended elements see [3,4, 10, 11, 151. 
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differ from standard piecewise polynomial finite elements in that vertex to vertex 
connection for adjacent elements is not required during element assembly, and thus 
two or more smaller elements are allowed to abut against the edge of a larger 
element. 

Let Q be any bounded rectangular polygon and let v be a decomposition of D 
into an arbitrary disjoint union of rectangles. In Figs. l-4 we give examples which 
illustrate the kinds of locally refined arrays of rectangular elements which we have 
in mind. Note that some of the mesh lines of T terminate in the interior of Q. 

I i”i i i i i i”i i i i i iTI 
FIG. 1. Local mesh refinement about eight points. 

FIG. 2. A second scheme for local mesh refinement about a point. 

FIG. 3. Local mesh refinement at reentrant comer of L-shaped region. 

FIG. 4. Local mesh refinement for a doubly connected rectangular polygon. 
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In Section 2, we show how these new piecewise polynomial blended elements are 
constructed. In addition, we indicate how these elements can be modified near the 
boundary of D to provide finite element approximations which exactly satisfy 
prescribed Dirichlet boundary conditions. 

The results of numerical calculations are presented in Section 3 for three model 
problems: (1) the determination of displacement near the point of application of 
a point loaded membrane, (2) the determination of deformation of a cracked 
beam under torsion, and (3) a point source problem with nonhomogeneous 
Dirichlet boundary conditions. The main conclusion reached from these cal- 
culations is that the use of locally refined, linearly blended finite elements is an 
efficient technique for the approximation of nonsmooth boundary value problems. 

2. THE LINEARLY BLENDED FINITE ELEMENT SUBSPACE, P(r) 

Let Q be a bounded, possibly multiply connected rectangular polygon which 
has been decomposed arbitrarily into a disjoint union T of rectangular cells, 
Q, , Q!z ,.**> Sz, by mesh lines drawn parallel to the x and y coordinate axes; and 
such that a total of M mesh nodes (vertices) PI, Pz ,..., p&f results. In Fig. 3, for 
example, N = 30 and M = 47. Let aS& , a52, ,..., XJ, represent the boundaries 
of the cells, and let h denote the maximum length of all cell sides. 

The approximation scheme to be considered assigns to each set of nodal values 
vj = v(PJ a continuous, piecewise bilinear interpolant vh defined on Sz as follows. 

(i) Construct continuous, univariate, piecewise linear interpolants to the 
nodal values vg along each vertical and horizontal mesh line using as joints the 
adjacent mesh nodes in rr. 

(ii) Within each mesh cell Q, , define vh to be the linearly blended interpolant 

Pi= (Xi ,Yi) P. 
3 

FIG. 5. The element ~2~. 
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[2,9] to the resulting piecewise linear boundary functions defined on the four 
edges of J2, by (i). 

Let us be more specific. If Sz, is an arbitrary cell in 7r, then the mesh nodes Pi 
assaciured with QD are those nodes which lie on 8Q, (see Fig. 5). 

Now let e,(x), e,(u), e,(x), and e&p) be univariate functions defined on the - - -- 
respective edges PiPi, PjPk , P,Pl , and PIPd of QP (cf. Fig. 5). The e functions 
(called edge functions in the sequel) are assumed only to be compatible (i.e., 
er(xJ = e&&, etc.). Linear blending [2,9] of these edge functions defines the 
interpolant 

Note that U(X, u) interpolates exactly the edge functions on aQn, . 
If the edge functions in (1) are all defined to be compatible piecewise linear 

functions with joints located at the mesh nodes associated with Q, , then it 
follows from (1) that the resulting function vh is continuous, piecewise bilinear 
on 52, with respect to the tensor product partition shown in Fig. 6. 

FIG. 6. t(” defined on I&, . 
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A cell is called simple if the only nodes associated with it are its four corner nodes. 
It follows from (1) that uh is bilinear on a simple cell 52, (i.e., uh = a, + a,x + 
a,y + a,xy), hence (In,, uh) is the familiar bilinear finite element with four degrees 
of freedom. If Sz, is a nonsimple cell, then ah is piecewise bilinear on Sz, (cf. Fig. 6) 
and (Q, , v”) is in fact a macroelement [12, p. 841 with interior nodal values con- 
strained a priori by construction. 

If vh is defined on IR via its local definition on each Q, , then vh is uniquely 
determined by its nodal values @(PJ,j = 1, 2,..., M. Note also that vh is continuous 
on all of IR and hence has finite strain energy (i.e., the Dirichlet integral 
JJn (VVh . VzP) dx dy is bounded). Therefore, if P(n) is defined to be the collection 
of all vh as (uh(P,), @(P,),..., vh(PW)) ranges over R”, then P(n) is an M-dimensional 
admissible trial solution space for finite element approximations to second-order 
elliptic boundary value problems. A slight modification of the convergence proof 
in [l] shows that if u(x, v) is a sufficiently smooth function defined on Sz, then 

I( u - zih I/ = O(h), 

where II .\I is the norm 11 u iI2 = JJn {u2 + oZ2 + u,“> dx dy and iih E P(n) is charac- 
terized by lih(P,) = u(P,), i = 1, 2 ,..., M. 

If we define S,,h(~) to be the subspace of functions in Sh(7r) which vanish on X?, 
then it follows that vh E SOA if and only if ah(PJ = 0 for all Pi E LX?. 

Finally, let g(x, y) be a given function defined on X2 (a Dirichlet boundary 
condition, for example) and let 9, be any cell in n. For those edges of QP which 
lie in 352, let the corresponding e functions in (1) be given by the appropriate 
values of g(x, JJ), while for edges of &! which do not lie in aQ, let the corresponding 
compatible e functions be piecewise linears defined by the interpolation conditions 

Vi> = dPi> if Pie ac2, 
e(Pi) = 0 if Pi $22. 

Let the resulting linear blended interpolant in (1) be denoted Gh(x, JJ). Note that 
if Gh is extended to all of 52 by its local definition on 9, , then Gh 3 g on a52 
and Gh c 0 on all Q, such that Q, n X? is empty. The locally refined trial solution 
space defined by Gh + Soh(rr) can now be used to provide finite element approxi- 
mations uh z Gh + vh which exactly satisfy the boundary condition u = g 
on a52.2 

Before considering numerical results, we describe a computationally convenient 
basis for the space P(n). Let +j(x, y) be the trial function in Sh(n) which equals 1 
at the jth node and zero at all other nodes in rr. Then these linearly blended 

e This exact boundary technique was first proposed for finite element analysis by Marshall and 
Mitchell [ll] for bilinear tensor product elements. 
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functions ~j form a patch basis for the trial space P(n); that is, 4j vanishes on all 
elements not containing the jth node. Using this basis for numerical calculations, 
we focus now on the implementation of locally refined, linearly blended elements 
for the finite element approximation of three boundary value problems. 

3. NUMERICAL RESULTS 

For our first problem we consider the determination of displacement near 
the point of application of a point loaded rectangular membrane. 

The Point Loaded Membrane 

Consider the simple displacement problem for a clamped square membrane 
subject to a point load applied at its center. The displacement u is characterized 
by the boundary value problem 

-v%f =f(x,y) = 6(x - g,y - :> for (x, Y) E Q = (0, 1) x (0, 11, (2) 

If = 0 for (x, y) E 8Q, (3) 

and u behaves radially at (4, 3) like In r. Let So”(r) be the space of linearly blended 
trial functions which vanish on &? The finite element approximation uh E Sgh(7r) 
is defined to be that function in Sgh(~) that satisfies 

We begin by defining a sequence of locally refined rectangular partitions Z-,, , 
n = 1, 2?... of Q. In Figs. 7-9 we show ?rl , rrz , and n3 , and from these constructions 
it should be clear how 7~, is derived as a local refinement of z-+~ . Note that each 
rr,, is a nested union of square elements with the maximum side length of any 
element being ii n = Q(+)+l. Also, dim Soh(~,) = 16n - 7. 

In Fig. 10 we plot the plane sectional values of displacement u and approximate 

FIG. 7. Partition r1 for membrane problem. 
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FIG. 8. Partition ~~ for membrane problem. 

FIG. 9. Partition T+ for membrane problem. 

displacement uh determined along the 45” line y = x for the partitions nl, 7r3, 
and rr5 . The values of the exact solution u(x, v) were calculated from the represen- 
tation given in [5, p. 3861. As anticipated, local mesh refinement results in improved 
accuracy without the expense of a large increase in the number of unknowns in 
the finite element problem. 

Torsion Problem 

For our second problem (Fix, Gulati, and Wakoff [7]) we consider the boundary 
value problem 

-vu = 1 on Q, (4) 

u=o on PPl , P2P3, 
(5) 

au/a9 = 0 on PIP2 , Q2p2, pQ2 9 

where Q is the rectangle [O, 11 x [0, $1 ( see Fig. 11). This boundary value problem 
arises in the study of the rigidity and deformation of a cracked square elastic beam 
under torsion (see [7] for details). 

The solution u to (4) and (5) has a singularity only at the point P = (4, $), 
which behaves radially at P like r1j2 sin e/2. The so-called stress intensity factor, 
u,, , associated with (4) and (5) is defined by 

u. = 1;s r-1/2[u(r, 7r)]. (6) 
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FIG. 10. Plots of exact solution IJ to source problem (2), (3), and finite element approximations 
uh in @(TJ for n = 1,3, and 5. 

P1 = (0,1/Z) P = (l/2,1/2) Q, = (1.W) 

p2 = (O,O) 

u=o 

Q = (l/2,0) P3 = (1.0) 

FIG. 11. The domain R. 



BLENDED FINITE ELEMENTS 219 

Our aim is to provide accurate approximations to u0 using finite element 
approximations uh generated in the linearly blended finite element space SoA(.rr> 
(in this case the members of S,,A(n) need only be forced to satisfy the essential 
Dirichlet boundary conditions given in (5)). To this end we define a sequence 
(~3 of locally refined rectangular decompositions of Q. In Figs. 12-14 we show 

FIG. 12. The partition nl for the crack problem. 

FIG. 13. The partition ~~ for the crack problem. 

FIG. 14. The partition vs for &he crack problem. 

Tl, nz 9 and n, from these figures it should be clear how rr, is constructed as a 
local refinement of 7rnel . Note again that for any n, r,, is composed solely of 
square elements with maximum side length ii,, = t and minimum side length 
T, = ~(~)~-l = (J-),+1, n = 1, 2 ).... By counting the number of unconstrained 
node points in rrn , it is easy to verify that 

dim(S,h(~,J) = dim(S,,A(7r,-1)) + 8 
=Sn--1 for n = 1, 2,.... (7) 

By virtue of (7), the symmetric, banded finite element stiffness matrix &(?T,), 
which arises from calculations in Soh(~,), is an (8n - 1) x (8n - 1) matrix for 
n = 1, 2,.... Let M&n,) represent the bandwidth of J&,(~T,J. That is to say, 
M&r,) is the number of strictly upper diagonals in K&,J. Now suppose that 
the unknowns in Soh(n,) are ordered according to the nested scheme shown for 
n3 in Fig. 15. From Fig. 15 it should be clear how this nested ordering would be 
defined for rr, , n = 1, 2 ,.... From Fig. 15 it can be easily verified that 

M&7&) = 10 for all n = 1, 2,.... (8) 
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2.3 17 

22 21 20 19 18 

16 15 14 13 12 11 

7 6 5 4 

FIG. 15. A nested ordering of unknowns in sr, . 

Finally, if uh is the linearly blended finite element approximation to u in Soh(n,,), 
then we define u,&*) E q, by (cf. (7)) 

u (r*) = uyr* n 3 ?r)/(r*p, (9) 

where r* is a small positive number. The exact value of CT~ determined in [7] is 
given by q, = 0.1917. In Table I we show the results of determining (T,(T*) in (9) 
using ZP E Soh(rn) for IZ = 12, 15, 18, and 21. For this table the values 
r* = ($)‘O, (&)lr, (8)‘” and (4)‘” were used. 

Table II gives the values for the approximate stress function U* at the points 
with coordinates R, = (12/24, 1 l/24), RC = (l/24, l/4) and R, = (23/24, l/4) for 

TABLE I 

An Approximation to Stress Intensity Factor q, for Crack Problem Using 
Linearly Blended Finite Elements in Soh(r,) to Calculate a, (u,, = 0.1917) 

Dim Soh(n,) 
II = 8n - 1 M&z-J dr*) 6 %(r*> b o”(v*) c 4r*) d 

- 
12 95 10 0.1895 0.1875 0.1837 0.1788 

15 119 10 0.1913 0.1912 0.1908 0.1898 
18 143 10 0.1915 0.1916 0.1917 0.1917 
21 167 10 0.1917 0.1917 0.1917 0.1917 

a r* = (&lo. 
b r* = (#ll. 
c r* = (2p. 
d r* = (&)18. 
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TABLE II 

Linearly Blended Finite Element Approximations in the Space &l’(~,,) to the 
Stress Function Calculated at the Points RI , Rz , and Rs 

Dimension of 
n .%Y~n) uYR,) ’ u”(&) ’ u”UG) ’ 

1 I 0.007423 0.03189 0.06685 

3 23 0.02070 0.03375 0.07032 

6 47 0.02650 0.03387 0.07105 

12 95 0.02694 0.03388 0.07105 

a R, = (12124, 11/24), u(R,) = 0.027425. 
c Rz = (l/24,1/4), u(R,) = 0.032877. 
c Rs = (23/24, l/4), u(R,) = 0.070844. 

the partitions z-l , rs ,7~~ , and n-12 . The exact values of u at R, , R2, and R, were 
determined in [7] to be, respectively, 0.027425, 0.032877, and 0.070844. 

In order to provide comparison of locally refined, linearly blended finite elements 
with the technique of adjoining appropriate singular basis functions to standard 
piecewise polynomial finite element spaces, we consider the results presented in [7] 
for approximating (4) and (5). In [7] a uniform product partition of subsquares with 
side length h is first used to decompose the region 52 in Fig. 11. Next, piecewise 
polynomial, finite element spaces associated with the product partition of Sz are 
defined as follows. 

(i) S,,L denotes the space of continuous bilinear polynomials a + bx + 
cy + dxy in each subsquare of G. 

(ii) ShH denotes the space of Cl functions which are bicubic Hermite poly- 
nomials in each subsquare of Sz. 

(iii) Si” is the space of piecewise bicubic polynomials of class C2 everywhere 
except across the line PQ in Fig. 11 where they are only continuous. 

To the spaces ShL, ShH, and Si” are added singular functions (see [7, pp. 21 I-2161 
for details). Four singular basis functions are added to ShH and SiL, while two 
singular basis functions are added to S,, L. Finally, the spaces enriched with singular 
functions are denoted by SShL, SShH, and SSF. 

In Table I’ we reproduce the results given in [7] for the approximate stress 
intensity factor croh defined using finite element approximations in SShL, SShH, 
and SS:“. Table II’ gives the values of the finite element approximations in SShL, 
SShH, and SS”” at the points R, , R, , R, defined in Table II. 
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TABLE I 

Approximate Stress Intensity Factor D 0h Using Singular Finite Element Approximations 

Space Dimension (h) (Osl7) 

SF= n 40(W) 0.1925 

W/8) 0.1920 

109(1/12) 0.1918 

S&H 36(1/4) 0.1902 

132(1/8) 0.1915 

204(1/10) 0.1916 

S&L W/8) 0.1830 

129(1/16) 0.1867 

201(1/20) 0.1877 

TABLE II 

Singular Finite Element Approximation to the Solution of Eqs. (4) and (5) 

RI & & 
Spa Dimension (h) 0.027425 0.032877 0.070844 

ssy 4w16) 0.027438 0.032887 0.070835 

WlP.3 0.027429 0.032881 0.070847 

109(1/12) 0.027426 0.032877 0.070844 

S&H w 14 0.027402 0.032859 0.070895 

132(1/8) 0.027423 0.032876 0.070848 

204(1/10) 0.027424 0.032877 0.070844 

S&L 33(W) 0.026459 0.033025 0.070385 

129(1/16) 0.027153 0.032917 0.070721 

201(1/30) 0.027289 0.032903 0.070780 

Comparison of Table I with Table I’ and Table II with Table II’ shows that finite 
element calculations using locally refined, linearly blended finite elements compare 
favorably (if system dimensionality is the basis for comparison) with like cal- 
culations performed in the piecewise polynomial spaces which have been augmented 
by singular functions. We remark that convergence is numerically demonstrated 
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in Table II’ as h -+ 0 for finite element approximations in SShL, SShH, and SSiL. 
That numerical convergence is not demonstrated in Table II for approximations 
in SoA(7rT,) is attributable to the fact that an increase in n in Table II implies a local 
refinement of rrn (h = ii = t remains constant for all n) about the point P in 
Fig. 11, while a decrease in h in Table II’ implies a gZobaZ refinement in the product 
partition of the entire region Q. Convergence in Soh(r,) is, of course, achieved 
as h -+ 0. 

Let l&, be the decomposition of Q into rectangles defined by extending to Z2 
all those mesh lines in 7r, which have terminal points interior to Sz. fin is said to be 
a semilocalproduct mesh refinement of Q. Since all cells in 17, are simple cells, the 
space S$(17,) of linearly blended finite elements defined in Section 2 is, in fact, 
the familiar tensor product space of rectangular bilinear finite elements associated 
with 17, with four degrees of freedom per element. If the nodal unknowns in 
S,h(lT,J are ordered from left to right, a line at a time as usual, then it is easily 
verified that 

dim Soh(&) = 2n2 + 4n + 1, (10) 

~LBW7J = + + 3, (11) 

where MLB(Ula) is the bandwidth of the stiffness matrix defined by finite element 
approximations to (4) and (5) in SOh(&). 

In Table III we give the numerical results of approximating the stress intensity 
factor a,, by u,(r*) in (9) using ~8 in S,,h(L!,J for 12 = 12, 15, and 18. The conclusions 
to be drawn from a comparison of Tables I and III are obvious: Accurate approxi- 
mations to u,, using finite element approximations in the locally refined space 

TABLE III 

Approximation to Stress Intensity Factor o0 for Crack Problem Using 
Bilinear Tensor Product Finite Elements in S,#&,) to Calculate o,, (o,, = 0.1917) 

Dim S,,h(Z&) MLB(IT,) 

n =2nPf4n+ 1 =2n+4 %dr*) a 4*) Ir dr*) ’ 4 *) d 

12 337 28 0.1898 0.1878 0.1834 0.1788 

15 511 34 0.1916 0.1915 0.1910 0.1898 

18 721 40 0.1917 0.1917 0.1917 0.1917 

a r* = @O. 
b r* = ($)>“. 
e r* = (+)I*. 
d r* = (4)‘“. 
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.Soh(7ra) can be obtained with far fewer unknowns than similar approximations 
in the semilocally refined bilinear space &lA(II,). 

A Source Problem: Exact Represerltation of Boundary Conditions 

Our final example (Marshall and Mitchell [I 1 J) involves nonhomogeneous 
Dirichlet boundary conditions, u = g on X?, and is included to illustrate the results 
of performing finite element calculations in the space Gh + Sob(n), where Gh is the 
linearly blended interpolant of g defined in Section 2 such that Gh = g on 28. 

For E > 0, consider the problem 

O”u = 0 on Q = (0, 1) x (0, 1) (12) 

with boundary condition 

24 = g = lnr on iiQ, (13) 

where r2 = (x + c)” + (y -t E)~. The exact solution u to this problem is given by 

u = lnr for (x, y) in Q. 

Note that u possesses high local gradient near the origin with // VU 11 = l/r in Q 
and jj Vu 11 f 0.707/c for (x, y) = (0,O). 

Let {r,} be the sequence of locally refinement rectangular partitions of 52 defined 
in Figs. 16-18 for IZ = 1, 2, and 3. 

El 
FIG. 16. The partition rl. 

FIG. 17. The partition n2. 
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LiEI 
FIG. 18. The partition r3. 

Let (17,) be the sequence of tensor product, semilocally refined partitions of 52, 
where n,, is defined by extending the mesh lines of rr, through to aSJ. As before, 
Soh(n,) is the locally refined space of linearly blended elements, and S,,h(17,J is 
the standard semilocally refined tensor product space of bilinear elements. 

Next, let g(rr,) and j(Il,J represent discrete piecewise linear interpolants to the 
boundary function g in (13) defined with respect to the boundary mesh nodes in 
rr,, and IIn, respectively, and let Gh(rn), @(7~,) and &(17,) be, respectively, the 
linearly blended interpolants of g, g”(n,), and f(17,) as defined in Section 2. We now 
consider finite element approximations to (12) and (13) generated in the three 
functions spaces Gh(.rr,) + Soh(~,), &(r,,) + S,,“(X& and C??(IQ + Soh(17,). 
Table IV we list the characteristics of each of the approximation spaces. 

TABLE IV 

Characteristics of Approximation Spaces 

Space Dim S$( .) 
Bandwidth of 

stiffness matrix 
Value on 

asE 
Type of 
refinement 

3n - 2 

2n - 2 

nz 

3” 

3” 

nb 

g 

a%) 

Puu 

Local 

Local 

Semilocal 

o Based on nested ordering of unknowns similar to Fig. 15. 
b Based on usual ordering of tensor product unknowns. 

The finite element approximation uh E Gh(7rfl) + vh in Gh(~,) + Soh(rr,J to 1.4 
is characterized by 

(V(GI(T,J + vh), Vu) = 0 for all v in S$(?T~), 

where (,) is the usual L,-inner product on Q. Similar characterizations hold for 
uh in Gh(?r,) + SOh(?r,,) and ch(nn) + SDh(fl,). We remark that uh E ch(fln) + 
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,SOh(17,J is a standard tensor product finite element approximation to (12) and (13) 
in which the boundary condition has been approximated by piecewise linear 
interpolation. 

Let E = 1O-5 in (13) so that Ij u I/ A lo5 at (0,O). In Tables V, VI, and VII we 
give the numerical results of approximating u by its finite element approximation 

TABLE V 

Finite Element Approximation to Eqs. (12) and (13) in G*(n,,) + ,S,“(r,J 

Bandwidth of 
n Dim SOh(rn) stiffness matrix II u - Uh Ilm (Relative error) 

8 22 3 2.41 (34.0 %) 
10 28 3 1.44 (17.7 %) 

12 34 3 0.67 (7.3 %I 

Note. uh E G”(n,) + S2(q). 

TABLE VI 

Finite Element Approximation to Eqs. (12) and (13) in c?(T,) + &,h(n”) 

Bandwidth of 
n Dim Sod stiffness matrix II u - Uh lb (Relative error) 

8 22 3 4.29 (67.1%) 

12 34 3 1.92 (21.8 %) 

14 40 3 0.96 (9.92 %) 

Note. uh E eh(=,) + SOh(nn). 

TABLE VII 

Finite Element Approximation to Eqs. (12) and (13) in ch(ZZ,,) + ,S,h(n,,) 

Bandwidth of 
n Dim S,“(n,) stiffness matrix II u - ZPIlm (Relative error) 

8 64 8 2.91 (40.1 %I 
10 100 10 1.83 (21.8 %I 
12 144 12 0.91 (9.73 %) 

Note. uh E @‘(l&J + S,“(L’,,). 
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uh in G*(.rr,J + Soh(7r,), @(r,J + Soh(n,,), and @@In) + S$(17,), respectively. 
In these tables II - Ilrn signifies the maximum norm. As expected, for a given dimen- 
sionality, approximations in Gh@,J + Soh(r,J are more accurate than similar 
approximations in @(z-J + SO+,); and this improvement is most noticeable 
for coarse partitions. Comparing Tables V and VI with VII indicates, however, 
that local mesh refinement is the most important factor (as opposed to the exact 
representation of boundary conditions) in improving the efficiency of the finite 
element calculations. 

4. CONCLUSIONS AND COMMENTS 

We have described the construction and use of a finite dimensional, piecewise 
bilinear, space of linearly blended finite elements. When used as a trial solution 
space, this class of functions permits locally refined rectangular partitions of any 
bounded rectangular polygon 52. Numerical calculations indicate that finite element 
approximations can be generated in these spaces which yield accurate approxi- 
mations to boundary value problems possessing local regions of high gradients 
without the expense of an unreasonably large number of finite element nodal 
unknowns. 

We wish to point out that although the region Sz has been assumed throughout 
to be a rectangular polygon, the linearly blended elements discussed in this paper 
can be abuted against any element that yields linear displacement along the 
adjoining adge (for example, linear triangles or curved isoparametric triangles 
with at least one linear side [16]). Such a merger would yield continuous approxi- 
mations and would exploit the greater flexibility of triangular elements for approxi- 
mating curved boundaries. 

As pointed out in [l], higher order linearly blended elements can be constructed 
by considering higher order piecewise polynomial edge functions in (1) than the 
piecewise linears considered in Section 2 (for example, cubic spline or cubic 
Hermite polynomials). We presume that the conclusions we have reached in 
this paper would not be changed were such extensions to be implemented. 
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